6 research outputs found

    Assessing effective connectivity in epileptogenic networks: a model-based simulation approach

    Get PDF
    Different connectivity configurations were simulated using epileptogenic and non epileptogenic neuronal populations. Connectivity between them was measured using Partial Directed Coherence and Directed Transfer Function. The results were satisfactory and in some cases of clinical utility. The methodology that was used is discussed in comparison with previous works.Fil: Jacobacci, Florencia. Universidad Favaloro. Facultad de IngenierĂ­a y Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BiologĂ­a Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de BiologĂ­a Celular y Neurociencia; ArgentinaFil: Sapir, MartĂ­n. Universidad Favaloro. Facultad de IngenierĂ­a y Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BiologĂ­a Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de BiologĂ­a Celular y Neurociencia; ArgentinaFil: Collavini, Santiago. Universidad Favaloro. Facultad de IngenierĂ­a y Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BiologĂ­a Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de BiologĂ­a Celular y Neurociencia; ArgentinaFil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BiologĂ­a Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de BiologĂ­a Celular y Neurociencia; ArgentinaFil: Blenkmann, Alejandro Omar. Universidad Favaloro. Facultad de IngenierĂ­a y Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BiologĂ­a Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de BiologĂ­a Celular y Neurociencia; Argentin

    Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates

    Get PDF
    Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20?30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6?24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis.Fil: Princich, Juan Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Wassermann, Demian. Harvard Medical School; Estados Unidos de América;Fil: Latini, Facundo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Oddo, Silvia Andrea. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Blenkmann, Alejandro Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; ArgentinaFil: Seifer, Gustavo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; Argentin

    Direct brain recordings reveal continuous encoding of structure in random stimuli

    Get PDF
    The brain excels at processing sensory input, even in rich or chaotic environments. Mounting evidence attributes this to the creation of sophisticated internal models of the environment that draw on statistical structures in the unfolding sensory input. Understanding how and where this modeling takes place is a core question in statistical learning and predictive processing. In this context, we address the role of transitional probabilities as an implicit structure supporting the encoding of a random auditory stream. Leveraging information-theoretical principles and the high spatiotemporal resolution of intracranial electroencephalography, we analyzed the trial-by-trial high-frequency activity representation of transitional probabilities. This unique approach enabled us to demonstrate how the brain continuously encodes structure in random stimuli and revealed the involvement of a network outside of the auditory system, including hippocampal, frontal, and temporal regions. Linking the frame-works of statistical learning and predictive processing, our work illuminates an implicit process that can be crucial for the swift detection of patterns and unexpected events in the environment.Fil: Fuhrer, Julian. University of Oslo; NoruegaFil: Kyrre, Glette. University of Oslo; NoruegaFil: Ivanovic, Jugoslav. University of Oslo; NoruegaFil: Gunnar Larsson, Pål. University of Oslo; NoruegaFil: Bekinschtein, Tristán Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Cambridge; Reino UnidoFil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Knight, Robert T.. University of California at Berkeley; Estados UnidosFil: Tørresen, Jim. University of Oslo; NoruegaFil: Solbakk, Anne Kristin. University of Oslo; Noruega. Helgeland Hospital; NoruegaFil: Endestad, Tor. University of Oslo; Noruega. Helgeland Hospital; NoruegaFil: Blenkmann, Alejandro Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Oslo; Norueg

    The brain tracks auditory rhythm predictability independent of selective attention

    No full text
    The brain responds to violations of expected rhythms, due to extraction- and prediction of the temporal structure in auditory input. Yet, it is unknown how probability of rhythm violations affects the overall rhythm predictability. Another unresolved question is whether predictive processes are independent of attention processes. In this study, EEG was recorded while subjects listened to rhythmic sequences. Predictability was manipulated by changing the stimulus-onset-asynchrony (SOA deviants) for given tones in the rhythm. When SOA deviants were inserted rarely, predictability remained high, whereas predictability was lower with more frequent SOA deviants. Dichotic tone-presentation allowed for independent manipulation of attention, as specific tones of the rhythm were presented to separate ears. Attention was manipulated by instructing subjects to attend to tones in one ear only, while keeping the rhythmic structure of tones constant. The analyses of event-related potentials revealed an attenuated N1 for tones when rhythm predictability was high, while the N1 was enhanced by attention to tones. Bayesian statistics revealed no interaction between predictability and attention. A right-lateralization of attention effects, but not predictability effects, suggested potentially different cortical processes. This is the first study to show that probability of rhythm violation influences rhythm predictability, independent of attention

    Preservation of Interference Effects in Working Memory After Orbitofrontal Damage

    No full text
    Orbitofrontal cortex (OFC) is implicated in multiple cognitive processes, including inhibitory control, context memory, recency judgment, and choice behavior. Despite an emerging understanding of the role of OFC in memory and executive control, its necessity for core working memory (WM) operations remains undefined. Here, we assessed the impact of OFC damage on interference effects in WM using a Recent Probes task based on the Sternberg item-recognition task (1966). Subjects were asked to memorize a set of letters and then indicate whether a probe letter was presented in a particular set. Four conditions were created according to the forthcoming response (“yes”/“no”) and the recency of the probe (presented in the previous trial set or not). We compared behavioral and electroencephalography (EEG) responses between healthy subjects (n = 14) and patients with bilateral OFC damage (n = 14). Both groups had the same recency pattern of slower reaction time (RT) when the probe was presented in the previous trial but not in the current one, reflecting the proactive interference (PI). The within-group electrophysiological results showed no condition difference during letter encoding and maintenance. In contrast, event-related potentials (ERPs) to probes showed distinct within-group condition effects, and condition by group effects. The response and recency effects for controls occurred within the same time window (300–500 ms after probe onset) and were observed in two distinct spatial groups including right centro-posterior and left frontal electrodes. Both clusters showed ERP differences elicited by the response effect, and one cluster was also sensitive to the recency manipulation. Condition differences for the OFC group involved two different clusters, encompassing only left hemisphere electrodes and occurring during two consecutive time windows (345–463 ms and 565–710 ms). Both clusters were sensitive to the response effect, but no recency effect was found despite the behavioral recency effect. Although the groups had different electrophysiological responses, the maintenance of letters in WM, the evaluation of the context of the probe, and the decision to accept or reject a probed letter were preserved in OFC patients. The results suggest that neural reorganization may contribute to intact recency judgment and response after OFC damage

    Motor-language coupling: Direct evidence from early Parkinson's disease and intracranial cortical recordings

    No full text
    Language and action systems are functionally coupled in the brain as demonstrated by converging evidence using Functional magnetic resonance imaging (fMRI), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and lesion studies. In particular, this coupling has been demonstrated using the action-sentence compatibility effect (ACE) in which motor activity and language interact. The ACE task requires participants to listen to sentences that described actions typically performed with an open hand (e.g., clapping), a closed hand (e.g., hammering), or without any hand action (neutral); and to press a large button with either an open hand position or closed hand position immediately upon comprehending each sentence. The ACE is defined as a longer reaction time (RT) in the action-sentence incompatible conditions than in the compatible conditions. Here we investigated direct motor-language coupling in two novel and uniquely informative ways. First, we measured the behavioural ACE in patients with motor impairment (early Parkinson’s disease – EPD), and second, in epileptic patients with direct electrocorticography (ECoG) recordings. In experiment 1, EPD participants with preserved general cognitive repertoire, showed a much diminished ACE relative to non-EPD volunteers. Moreover, a correlation between ACE performance and action-verb processing (kissing and dancing test – KDT) was observed. Direct cortical recordings (ECoG) in motor and language areas (experiment 2) demonstrated simultaneous bidirectional effects: motor preparation affected language processing (N400 at left inferior frontal gyrus and middle/superior temporal gyrus), and language processing affected activity in movement-related areas (motor potential at premotor and M1). Our findings show that the ACE paradigm requires ongoing integration of preserved motor and language coupling (abolished in EPD) and engages motor-temporal cortices in a bidirectional way. In addition, both experiments suggest the presence of a motor-language network which is not restricted to somatotopically defined brain areas. These results open new pathways in the fields of motor diseases, theoretical approaches to language understanding, and models of action-perception coupling.Fil: Ibanez Barassi, Agustin Mariano. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Diego Portales; Chile. Instituto de Neurología Cognitiva; ArgentinaFil: Cardona, Juan F.. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Psicologia; Argentina. Instituto de Neurología Cognitiva; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dos Santos, Yamil Vidal. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Neurociencia Integrativa; ArgentinaFil: Blenkmann, Alejandro Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Favaloro; Argentina. Universidad Nacional de la Plata. Facultad de Ingenieria. Departamento de Electrotecnia. Laboratorio de Electronica Ind., Control E Instrumentac.; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital Gral.de Agudos "ramos Mejia"; ArgentinaFil: Aravena, Pía. Institut des Sciences Cognitives; FranciaFil: Roca, María. Instituto de Neurología Cognitiva; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; ArgentinaFil: Hurtado, Esteban. Pontificia Universidad Católica de Chile; ChileFil: Nerguizian, Mirna. Instituto de Neurología Cognitiva; Argentina. Universidad Favaloro; Argentina. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; ArgentinaFil: Amoruso, Lucía. Instituto de Neurología Cognitiva; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; ArgentinaFil: Gómez Arévalo, Gonzalo. Instituto de Neurología Cognitiva; Argentina. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; ArgentinaFil: Chade, Anable. Instituto de Neurología Cognitiva; Argentina. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; ArgentinaFil: Dubrovsky, Alberto. Instituto de Neurología Cognitiva; Argentina. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; ArgentinaFil: Gershanik, Oscar. Instituto de Neurología Cognitiva; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; ArgentinaFil: Kochen, Sara Silvia. Gobierno de la Ciudad de Buenos Aires. Hospital Gral.de Agudos "ramos Mejia"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Glenberg, Arthur. Arizona State University; Estados Unidos. University Of Wisconsin; Estados UnidosFil: Manes, Facundo Francisco. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; Argentina. Instituto de Neurología Cognitiva; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bekinschtein, Tristán Andrés. Instituto de Neurologia Cognitiva. Laboratorio de Psicologia Experimental y Neurociencia; Argentina. Instituto de Neurología Cognitiva; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Medical Research Council. Cognition and Brain Sciences Unit; Reino Unid
    corecore